2,009 research outputs found

    Avoiding dark states in open quantum systems by tailored initial correlations

    Full text link
    We study the transport of excitations on a V-shaped network of three coupled two-level systems that are subjected to an environment that induces incoherent hopping between the nodes. Two of the nodes are coupled to a source while the third node is coupled to a drain. A common feature of these networks is the existence of a dark-state that blocks the transport to the drain. Here we propose a means to avoid this state by a suitable choice of initial correlations, induced by a source that is common to both coupled nodes.Comment: 5 pages, 3 figure

    Cross border Classical Swine Fever control: Improving Dutch and German crisis management systems by an integrated public-private approach

    Get PDF
    The objective of this research approach is to analyse in which ways crisis management measures against Classical Swine Fever (CSF) can be improved by a public private cross border model. A core activity contains the analysis of information and communication systems: In a case study it has been empirically analysed if a sufficient supply of public and private information enables crisis managers at both sides of the Dutch-German border area to take decisions about CSF control more efficient. At the end of this approach a new crisis management model had been developed. One of the most important aspects thereby is the assessment of data: (1) within private quality management systems in normal times according to the benefit for public management tasks in times of crisis and (2) within public crisis management systems according to the benefit for cross-border CSF-control activities. To this effect two different methodological approaches have been combined within the model: (1) a method to identify and illustrate public actors and their options in crisis management decision making and (2) a system of communication and information exchange between public and private as well as Dutch and German actors (engage& exchange model) which permit to collect and to evaluate data in addition for a predefined time period are activated

    Non-Markovian Quantum Dynamics and Classical Chaos

    Full text link
    We study the influence of a chaotic environment in the evolution of an open quantum system. We show that there is an inverse relation between chaos and non-Markovianity. In particular, we remark on the deep relation of the short time non-Markovian behavior with the revivals of the average fidelity amplitude-a fundamental quantity used to measure sensitivity to perturbations and to identify quantum chaos. The long time behavior is established as a finite size effect which vanishes for large enough environments.Comment: Closest to the published versio

    Preservation of Positivity by Dynamical Coarse-Graining

    Full text link
    We compare different quantum Master equations for the time evolution of the reduced density matrix. The widely applied secular approximation (rotating wave approximation) applied in combination with the Born-Markov approximation generates a Lindblad type master equation ensuring for completely positive and stable evolution and is typically well applicable for optical baths. For phonon baths however, the secular approximation is expected to be invalid. The usual Markovian master equation does not generally preserve positivity of the density matrix. As a solution we propose a coarse-graining approach with a dynamically adapted coarse graining time scale. For some simple examples we demonstrate that this preserves the accuracy of the integro-differential Born equation. For large times we analytically show that the secular approximation master equation is recovered. The method can in principle be extended to systems with a dynamically changing system Hamiltonian, which is of special interest for adiabatic quantum computation. We give some numerical examples for the spin-boson model of cases where a spin system thermalizes rapidly, and other examples where thermalization is not reached.Comment: 18 pages, 7 figures, reviewers suggestions included and tightened presentation; accepted for publication in PR

    Quantum Zeno-based control mechanism for molecular fragmentation

    Get PDF
    A quantum control mechanism is proposed for molecular fragmentation processes within a scenario grounded on the quantum Zeno effect. In particular, we focus on the van der Waals Ne-Br2_2 complex, which displays two competing dissociation channels via vibrational and electronic predissociation. Accordingly, realistic three dimensional wave packet simulations are carried out by using ab initio interaction potentials recently obtained to reproduce available experimental data. Two numerical models to simulate the repeated measurements are reported and analyzed. It is found that the otherwise fast vibrational predissociation is slowed down in favor of the slow electronic (double fragmentation) predissociation, which is enhanced by several orders of magnitude. Based on these theoretical predictions, some hints to experimentalists to confirm their validity are also proposed.Comment: 4 pages, 3 figure

    Nonequilibrium thermal entanglement in three-qubit XXXX model

    Full text link
    Making use of the master equation and effective Hamiltonian approach, we investigate the steady state entanglement in a three-qubit XXXX model. Both symmetric and nonsymmetric qubit-qubit couplings are considered. The system (the three qubits) is coupled to two bosonic baths at different temperatures. We calculate the steady state by the effective Hamiltonian approach and discuss the dependence of the steady state entanglement on the temperatures and couplings. The results show that for symmetric qubit-qubit couplings, the entanglements between the nearest neighbor are equal, independent of the temperatures of the two baths. The maximum of the entanglement arrives at TL=TRT_L=T_R. For nonsymmetric qubit-qubit couplings, however, the situation is totally different. The baths at different temperatures would benefit the entanglement and the entanglements between the nearest neighbors are no longer equal. By examining the probability distribution of each eigenstate in the steady state, we present an explanation for these observations. These results suggest that the steady entanglement can be controlled by the temperature of the two baths.Comment: Comments are welcom

    Scalar Synchrotron Radiation in the Schwarzschild-anti-de Sitter Geometry

    Get PDF
    We present a complete relativistic analysis for the scalar radiation emitted by a particle in circular orbit around a Schwarzschild-anti-de Sitter black hole. If the black hole is large, then the radiation is concentrated in narrow angles- high multipolar distribution- i.e., the radiation is synchrotronic. However, small black holes exhibit a totally different behavior: in the small black hole regime, the radiation is concentrated in low multipoles. There is a transition mass at M=0.427RM=0.427 R, where RR is the AdS radius. This behavior is new, it is not present in asymptotically flat spacetimes.Comment: 13 pages, 6 figures, published version. References adde

    Influence of phonons on exciton-photon interaction and photon statistics of a quantum dot

    Full text link
    In this paper, we investigate, phonon effects on the optical properties of a spherical quantum dot. For this purpose, we consider the interaction of a spherical quantum dot with classical and quantum fields while the exciton of quantum dot interacts with a solid state reservoir. We show that phonons strongly affect the Rabi oscillations and optical coherence on first picoseconds of dynamics. We consider the quantum statistics of emitted photons by quantum dot and we show that these photons are anti-bunched and obey the sub-Poissonian statistics. In addition, we examine the effects of detuning and interaction of quantum dot with the cavity mode on optical coherence of energy levels. The effects of detuning and interaction of quantum dot with cavity mode on optical coherence of energy levels are compared to the effects of its interaction with classical pulse

    Bell-state preparation for electron spins in a semiconductor double quantum dot

    Full text link
    A robust scheme for state preparation and state trapping for the spins of two electrons in a semiconductor double quantum dot is presented. The system is modeled by two spins coupled to two independent bosonic reservoirs. Decoherence effects due to this environment are minimized by application of optimized control fields which make the target state to the ground state of the isolated driven spin system. We show that stable spin entanglement with respect to pure dephasing is possible. Specifically, we demonstrate state trapping in a maximally entangled state (Bell state) in the presence of decoherence.Comment: 9 pages, 4 figure

    Inducing nonclassical lasing via periodic drivings in circuit quantum electrodynamics

    Get PDF
    We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to engineer a single-atom laser that emits light into a nonclassical state. Our scheme relies on the dressing of the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative decay of the first qubit becomes an effective incoherent pumping mechanism that injects energy into the system, hence turning dissipation to our advantage. A second, auxiliary qubit is used to shape the decay within the cavity, in such a way that lasing occurs in a squeezed basis of the cavity mode. We characterize the system both by mean-field theory and exact calculations. Our work may find applications in the generation of squeezing and entanglement in circuit QED, as well as in the study of dissipative few- and many-body phase transitions
    • …
    corecore